International Conference on Tiling and Fourier Bases

p-adic spectral measure

 $\begin{array}{c} {\rm Ruxi\;Shi} \\ {\rm Shanghai\;\;Center\;\;for\;\;Mathematical\;\;Sciences} \\ {\rm Fudan\;\;University} \end{array}$

19 September 2025

Fuglede conjecture

Conjecture(1974)

 Ω is a tile of \mathbb{R}^d if and only if it is a spectral set.

- It is proved under the extra condition: T or Λ is a lattice. (Fuglede 1974)
- Not true for $d \ge 3$ on both direction: $d \ge 5$, a spectral set but not a tile. (Tao 2003) d = 3, 4. (Farkas, Gy, Matolsci and Kolountzakis 2006).
- lt remains open for d = 1, 2.
- ► True for convex sets. (Lev-Matolsci, 2022)

Fuglede conjecture

Conjecture(1974)

 Ω is a tile of \mathbb{R}^d if and only if it is a spectral set.

- It is proved under the extra condition: T or Λ is a lattice.
 (Fuglede 1974)
- Not true for $d \ge 3$ on both direction: $d \ge 5$, a spectral set but not a tile. (Tao 2003) d = 3, 4. (Farkas, Gy, Matolsci and Kolountzakis 2006).
- lt remains open for d = 1, 2.
- ▶ True for convex sets. (Lev-Matolsci, 2022)

LCA groups

- Let G be a locally compact abelian group. Let m is the Haar measure.
- ► Let *G* be the dual group of *G*.

$$\widehat{\mathbf{G}} := \{\chi: \mathbf{G} \to \mathbf{S}^1 | \text{continous group homomorphism} \}$$

- ▶ Examples: $\widehat{\mathbb{R}^d} = \mathbb{R}^d$, $\widehat{\mathbb{R}/\mathbb{Z}} = \mathbb{Z}$.
- ▶ Let $\Omega \subset G$ be a Borel set with $0 < m(\Omega) < +\infty$.
- ▶ We say that the set Ω **tiles** G by translations, if there exists a set $T \subset G$ such that $\{\Omega + t : t \in T\}$ forms a partition a.e. of G.
- ► The set Ω is said to be **spectral** if there exists a set $\Lambda \in \widehat{G}$ such that Λ forms an orthogonal basis of $L^2(\Omega)$.

LCA groups

- Let G be a locally compact abelian group. Let m is the Haar measure.
- ▶ Let \widehat{G} be the dual group of G.

$$\widehat{\textit{G}} := \{\chi: \textit{G} \rightarrow \textit{S}^{1} | \text{continous group homomorphism} \}$$

- ▶ Examples: $\widehat{\mathbb{R}^d} = \mathbb{R}^d$, $\widehat{\mathbb{R}/\mathbb{Z}} = \mathbb{Z}$.
- ▶ Let $\Omega \subset G$ be a Borel set with $0 < m(\Omega) < +\infty$.
- ▶ We say that the set Ω tiles G by translations, if there exists a set $T \subset G$ such that $\{Ω + t : t \in T\}$ forms a partition a.e. of G.
- ► The set Ω is said to be **spectral** if there exists a set $Λ ∈ \widehat{G}$ such that Λ forms an orthogonal basis of $L^2(Ω)$.

LCA groups

- Let G be a locally compact abelian group. Let m is the Haar measure.
- ▶ Let \widehat{G} be the dual group of G.

$$\widehat{\mathbf{G}} := \{\chi: \mathbf{G} \to \mathbf{S}^1 | \text{continous group homomorphism} \}$$

- ▶ Examples: $\widehat{\mathbb{R}^d} = \mathbb{R}^d$, $\widehat{\mathbb{R}/\mathbb{Z}} = \mathbb{Z}$.
- ▶ Let $\Omega \subset G$ be a Borel set with $0 < m(\Omega) < +\infty$.
- ▶ We say that the set Ω tiles G by translations, if there exists a set $T \subset G$ such that $\{\Omega + t : t \in T\}$ forms a partition a.e. of G.
- ► The set Ω is said to be **spectral** if there exists a set $Λ ∈ \widehat{G}$ such that Λ forms an orthogonal basis of $L^2(Ω)$.

Fuglede conjecture in LCA groups

Conjecture

A Borel set Ω is a tile if and only if it is a spectral set.

- ▶ S-T(G), respectively T-S(G), if the Spectral \Rightarrow Tile direction, respectively Tile \Rightarrow Spectral, holds in G;
 - (i) T- $S(\mathbb{R}) \Leftrightarrow T$ - $S(\mathbb{Z}) \Leftrightarrow T$ - $S(\mathbb{Z}/m\mathbb{Z})$ for all $m \in \mathbb{N}$
 - (ii) S- $T(\mathbb{R}) \Rightarrow S$ - $T(\mathbb{Z}) \Rightarrow S$ - $T(\mathbb{Z}/m\mathbb{Z})$ for all $m \in \mathbb{N}$ (Dutkay, Lai 2013)

Fuglede conjecture in LCA groups

Conjecture

A Borel set Ω is a tile if and only if it is a spectral set.

- ▶ S-T(G), respectively T-S(G), if the Spectral \Rightarrow Tile direction, respectively Tile \Rightarrow Spectral, holds in G;
 - (i) T- $S(\mathbb{R}) \Leftrightarrow T$ - $S(\mathbb{Z}) \Leftrightarrow T$ - $S(\mathbb{Z}/m\mathbb{Z})$ for all $m \in \mathbb{N}$
 - (ii) S- $T(\mathbb{R}) \Rightarrow S$ - $T(\mathbb{Z}) \Rightarrow S$ - $T(\mathbb{Z}/m\mathbb{Z})$ for all $m \in \mathbb{N}$ (Dutkay, Lai 2013)

Fuglede conjecture on local field

Local field	What we know
\mathbb{R}	still open
$\mathbb{C}\simeq\mathbb{R}^2$	still open
$\mathbb{F}_q((T))^d, q = p^n$	fail
	\mathbb{Q}_p holds (Fan–Fan–Liao–S, 2019)
\mathbb{Q}_p^d	\mathbb{Q}_p holds (Fan–Fan–Liao–S, 2019) \mathbb{Q}_p^5 ($p \equiv 1 \mod 4$), \mathbb{Q}_p^4 ($p \equiv 3 \mod 4$), \mathbb{Q}_2^3 fail
,	\mathbb{Q}_p^2 still open

- ▶ A bridge: finite field \rightarrow *p*-adic field \rightarrow field of real numbers.
- Examples: Kakeya conjecture
 - Kakeya posed the needle problem (1917): Kakeya set.
 - Wolff (1999) suggested a Kakeya conjecture over finite fields, proved by Dvir (2009).
 - ▶ Ellenberg–Oberlin–Tao (2010) suggested analogues of the Kakeya conjecture over topological fields whose metrics capture the multiple scales property of the Euclidean metric of \mathbb{R}^n : the finite extensions of \mathbb{R} , \mathbb{Q}_p and $\mathbb{F}_q((T))^d$, $q=p^n$.
 - Arsovski (JAMS, 2024): the *p*-adic Kakeya conjecture holds.
 - ▶ Wang-Zahl (preprint, 2025): Kakeya conjecture on \mathbb{R}^3 holds.

Why \mathbb{Q}_{ρ} ?

- ▶ A bridge: finite field \rightarrow *p*-adic field \rightarrow field of real numbers.
- Examples: Kakeya conjecture
 - Kakeya posed the needle problem (1917): Kakeya set.
 - Wolff (1999) suggested a Kakeya conjecture over finite fields, proved by Dvir (2009).
 - ▶ Ellenberg–Oberlin–Tao (2010) suggested analogues of the Kakeya conjecture over topological fields whose metrics capture the multiple scales property of the Euclidean metric of \mathbb{R}^n : the finite extensions of \mathbb{R} , \mathbb{Q}_p and $\mathbb{F}_q((T))^d$, $q=p^n$.
 - ► Arsovski (JAMS, 2024): the *p*-adic Kakeya conjecture holds.
 - ▶ Wang-Zahl (preprint, 2025): Kakeya conjecture on \mathbb{R}^3 holds.

Spectral measures on LCA

- ▶ A Borel measure ν on a LCA groups G is a **spectral measure** if $\exists \Lambda \subset \widehat{G}$ such that Λ is an orthogonal basis of $L^2(\nu)$.
- Law of pure type: a spectral measure is
 - either absolutely continuous (w.r.t. Haar measure),
 - discrete,
 - or singular continuous.

(Łaba-Wang, 2006 & He-Lai-Lau, 2013)

- A absolutely continuous spectral measure is of the form $1_Ω dμ$ for some Borel set Ω. (Dutkay-Lai, 2014)
- A discrete spectral measure is of the form $\sum_{c \in C} a \cdot \delta_c$ for some set $C \subset G$ and a > 0. (Łaba-Wang, 2006)

Spectral measures on LCA

- ▶ A Borel measure ν on a LCA groups G is a **spectral measure** if $\exists \Lambda \subset \widehat{G}$ such that Λ is an orthogonal basis of $L^2(\nu)$.
- ► Law of pure type: a spectral measure is
 - either absolutely continuous (w.r.t. Haar measure),
 - discrete,
 - or singular continuous.

(Łaba-Wang, 2006 & He-Lai-Lau, 2013)

- A absolutely continuous spectral measure is of the form $1_Ω dμ$ for some Borel set Ω. (Dutkay-Lai, 2014)
- ▶ A discrete spectral measure is of the form $\sum_{c \in C} a \cdot \delta_c$ for some set $C \subset G$ and a > 0. (Łaba-Wang, 2006)

Examples

- ► In finite groups, spectral measure ⇔ spectral set.
- ightharpoonup In \mathbb{R} ,
 - $\frac{1}{3}$ -Cantor measure \rightarrow non-spectral measure;
 - $\frac{1}{4}$ -Cantor measure \rightarrow spectral measure

Examples

- ► In finite groups, spectral measure ⇔ spectral set.
- ▶ In \mathbb{R} ,
 - $\frac{1}{3}$ -Cantor measure \rightarrow non-spectral measure;
 - $\frac{1}{4}$ -Cantor measure \rightarrow spectral measure.

Main result

Theorem (S, 2023)

A Borel measure on \mathbb{Q}_p is a spectral measure if and only it is p-homogeneous, i.e. the weak-* limit of discrete spectral measures.

ightharpoonup Question: Same phenomenon in \mathbb{R} ?

Main result

Theorem (S, 2023)

A Borel measure on \mathbb{Q}_p is a spectral measure if and only it is p-homogeneous, i.e. the weak-* limit of discrete spectral measures.

ightharpoonup Question: Same phenomenon in \mathbb{R} ?

The field of p-adic numbers

- ▶ Let p be a prime and $p \ge 2$.
- Any nonzero number $r \in \mathbb{Q}$ can be written as $r = p^{v} \frac{a}{b}$ where $v, a, b \in \mathbb{Z}$ and (p, a) = 1 and (p, b) = 1.
- ▶ Define $v_p(r) = v$ and $|r|_p = p^{-v_p(r)}$ for $r \neq 0$ and $|0|_p = 0$.
- $|\cdot|_p$ is a non-Archimedean absolute value. That means
 - (i) $|r|_p \ge 0$ with equality only for r = 0;
 - (ii) $|rs|_p = |r|_p |s|_p$;
 - (iii) $|r + s|_p \le \max\{|r|_p, |s|_p\}.$
- ▶ The field of *p*-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} under $|\cdot|_p$.

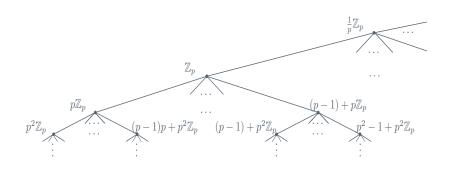
The field of *p*-adic numbers

▶ An element of \mathbb{Q}_p is of the form

$$\sum_{n=N}^{\infty}a_{n}p^{n} \qquad \text{where} \, N \in \mathbb{Z}, \, a_{n} \in \{0,1,\cdots,p-1\}.$$

- ▶ $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \le 1\}$ is the ring of p-adic integers.
- ▶ m is the Haar measure with $m(\mathbb{Z}_p) = 1$.

Tree model of \mathbb{Q}_p



The dual group of \mathbb{Q}_p

- ▶ The fractional part of $x = \sum_{n=N}^{\infty} a_n p^n$ is $\{x\} = \sum_{n=N}^{-1} a_n p^n$.
- An example of a non-trivial additive character is

$$\chi(x)=e^{2\pi i\{x\}}.$$

- From this character we can get all characters χ_y of \mathbb{Q}_p , defined by $\chi_y(x) = \chi(yx)$.
- $\blacktriangleright \ \widehat{\mathbb{Q}_p} = \mathbb{Q}_p.$

Fourier transform on \mathbb{Q}_p

▶ The Fourier transformation of $f \in L^1(\mathbb{Q}_p)$ is defined to be

$$\widehat{f}(y) = \int_{\mathbb{Q}_p} f(x) \overline{\chi_y(x)} dx \quad (y \in \widehat{\mathbb{Q}}_1 \simeq \mathbb{Q}_p).$$

Lemma

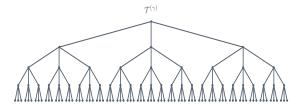
Let $\gamma \in \mathbb{Z}$ be an integer.

- (a) We have $\widehat{1}_{B(0,\rho^{\gamma})}(\xi) = p^{\gamma} 1_{B(0,\rho^{-\gamma})}(\xi)$ for all $\xi \in \mathbb{Q}_p$.
- (b) If $\Omega = \bigsqcup_j B(c_j, p^{\gamma})$ is a finite union of disjoint balls of the same size, then

$$\widehat{1}_{\Omega}(\xi) = p^{\gamma} 1_{B(0,p^{-\gamma})}(\xi) \sum_{j} \chi(-c_{j}\xi).$$

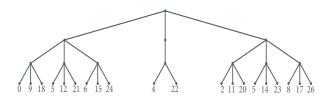
$\mathbb{Z}/p^{\gamma}\mathbb{Z}$ as a Tree

- ▶ We identify $\mathbb{Z}/p^{\gamma}\mathbb{Z} = \{0, 1, ..., p^{\gamma} 1\}$ with the following finite tree, denoted by $\mathcal{T}^{(\gamma)}$.
- ► Example: $\mathbb{Z}/3^4\mathbb{Z}$



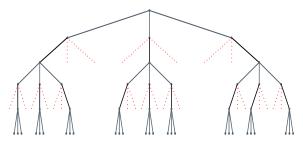
Compact open set as a Tree

- ▶ Each subset $C \subset \mathbb{Z}/p^{\gamma}\mathbb{Z}$ will determine a subtree of $\mathcal{T}^{(\gamma)}$, denoted by \mathcal{T}_C , which consists of the paths from the root to the points in C.
- ► Example: $C = \{0, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26\}$ as a subset of $\mathbb{Z}/3^4\mathbb{Z}$:



p-homogenous tree

- The tree T_C is called p-homogenous if the number of descendants the vertices at the same level is same and the number is either 1 or p.
- **Example:** $p = 3, \gamma = 2, C = \{0, 4, 8, 9, 13, 17, 18, 22, 26\}$.



Idea of the proof: Bruhat-Schwartz distribution

- Bruhat-Schwartz test functions D: uniformly locally constant functions of compact support.
- ▶ Bruhat-Schwartz distribution \mathcal{D}' : a continuous linear functional on the space of Bruhat-Schwartz test functions.

Proposition

Let $f,g\in\mathcal{D}'$. If the product $f\cdot g$ is well defined and equal to h, then we have

$$\mathcal{Z}_h \cap \mathcal{S}_f \subset \mathcal{Z}_g$$
.

Open problems

Question

local field: all tiles are spectral sets? Non-spectral set tiles?

Question

 \mathbb{Q}_p^d : all tiles are spectral sets? Non-spectral set tiles?

Question

 $(\mathbb{Z}/p^n\mathbb{Z})^d$: all tiles are spectral sets? Non-spectral set tiles?

Non-spectral set tiles: finite abelian group with at least two prime factors.

Spectral set as product structure

Question

Suppose $A \times B \subset \mathbb{Q}_p^n \times \mathbb{Q}_p^m$ is a spectral set. Is it true that both A and B are spectral sets?

- ▶ $A \times B \subset \mathbb{Z}/p^n\mathbb{Z} \times G$ is a spectral set with G finite abelian group, then both A and B are spectral sets. (Fan-S-Zhang, 2025+)
- ▶ $A \times B \subset \mathbb{R} \times \mathbb{R}$ is a spectral set. Is it true that both A and B are spectral sets?
 - ► A is an interval. (Greenfeld-Lev, 2016)
 - ► A is a union of two intervals. (Kolountzakis, 2016)

Spectral measure as product structure

Question

Suppose $\mu \times \nu \in \mathcal{P}(\mathbb{Q}_p^n) \times \mathcal{P}(\mathbb{Q}_p^m)$ is a spectral measure. Is it true that both μ and ν are spectral measures?

- ▶ $\mu \times \nu \in \mathcal{P}(\mathbb{R}) \times \mathcal{P}(\mathbb{R})$ is a spectral measure. Is it true that both μ and ν are spectral measures?
- ▶ Law of pure type?
- ► Under certain assumption: μ is the $\frac{1}{4}$ -Cantor set or λ -Bernoulli convolution?

Weak tiling

Question

 \mathbb{Q}_p : weak tiles are tiles/spectral sets?

- $ightharpoonup \mathbb{Z}/p^n\mathbb{Z}$: weak tiles are tiles and spectral sets. (S, 2025+)
- ▶ For $\mathbb{Z}/N\mathbb{Z}$, \mathbb{Z} or \mathbb{R} ?

Frame

Question

Can we classify frame spectral measures on \mathbb{Q}_p ?

► Cantor measure in \mathbb{Q}_p ?

Thanks for your attention!